Newton's Second Lawfrictionlessincline

1. Frictionless incline. Force FF is applied upon mass m=10kgm=10kg.
Graph 1
a). Find FF, so that mm moves up along the incline at constant velocity.
b). Find FNF_N (Normal Force).

Solution

a. Constant velocity indicates zero acceleration.

Fx=FxWx=0Fx=FcosθWx=mgsinθF=mgsinθcosθ=109.8sin30cos3057.7N\begin{aligned} \sum F_x &= F_x - W_x = 0\\ F_x &= F\cos \th\\ W_x &= mg\sin \th\\ \To F &= \frac{mg \sin \th}{\cos\th} = \frac{10*9.8*\sin 30^{\circ}}{\cos 30^{\circ}} \approx 57.7 N \end{aligned}

b. In yy-direction, the net force is zero too.

Fy=FNWyFy=0Wy=mgcosθFy=FsinθFN=mgcosθ+Fsinθ=109.8cos30+57.7sin30115.5N\begin{aligned} \sum F_y &= F_N - W_y - F_y = 0\\ W_y &= mg\cos \th\\ F_y &= F\sin\th\\ \To F_N &= mg\cos \th + F\sin \th\\ & = 10*9.8*\cos 30^{\circ} + 57.7 \sin 30^{\circ} \approx 115.5N \end{aligned}

2. Find maximum velocity vv before mass breaks loose and slides sideways.
Graph 2

Solution

Normal force FNF_N
Static Friction Fs=FNusF_s = F_N \cdot u_s
Centripetal Force Fc=mv2RF_c = \dfrac{mv^2}{R}
According to the diagram, we have

mg=FNcosθFssinth=FN(cosθuksinth)FN=mgcosθuksinthEq 1Fc=FNsinθ+Fscosθ=FN(sinθ+ukcosθ)=mgcosθuksinθ(sinθ+ukcosθ)Fc=mv2Rv=gR(sinθ+ukcosθ)cosθuksinθ=9.8100(sin30°+0.4cos30°)cos30°0.4sin30°35.29m/s\begin{aligned} mg &= F_N \cos \th - F_s\sin th\\ &= F_N (\cos \th - u_k\sin th)\\ \To & F_N=\frac{mg}{\cos \th - u_k\sin th} &\text{Eq 1}\\ F_c &= F_N \sin \th + F_s \cos \th\\ &= F_N (\sin \th + u_k \cos \th) \\ &= \frac{mg}{\cos \th - u_k\sin \th} \cdot (\sin \th + u_k \cos \th)\\ F_c &= \frac{mv^2}{R}\\ \To &v = \sqrt {\frac{gR(\sin \th + u_k \cos \th)}{\cos \th - u_k\sin \th}}\\ &= \sqrt {\frac{9.8\cdot 100 \cdot (\sin 30^\degree + 0.4 \cdot \cos 30^\degree)}{\cos 30^\degree - 0.4\cdot \sin 30^\degree}} \approx 35.29m/s \end{aligned}