1. Frictionless incline. Force F is applied upon mass m=10kg.
a). Find F, so that m moves up along the incline at constant velocity.
b). Find FN (Normal Force).
Solution
a. Constant velocity indicates zero acceleration.
∑FxFxWx⇒F=Fx−Wx=0=Fcosθ=mgsinθ=cosθmgsinθ=cos30∘10∗9.8∗sin30∘≈57.7N
b. In y-direction, the net force is zero too.
∑FyWyFy⇒FN=FN−Wy−Fy=0=mgcosθ=Fsinθ=mgcosθ+Fsinθ=10∗9.8∗cos30∘+57.7sin30∘≈115.5N
2. Find maximum velocity v before mass breaks loose and slides sideways.
Solution
Normal force FN
Static Friction Fs=FN⋅us
Centripetal Force Fc=Rmv2
According to the diagram, we have
mg⇒FcFc⇒=FNcosθ−Fssinth=FN(cosθ−uksinth)FN=cosθ−uksinthmg=FNsinθ+Fscosθ=FN(sinθ+ukcosθ)=cosθ−uksinθmg⋅(sinθ+ukcosθ)=Rmv2v=cosθ−uksinθgR(sinθ+ukcosθ)=cos30°−0.4⋅sin30°9.8⋅100⋅(sin30°+0.4⋅cos30°)≈35.29m/sEq 1