centripetal forcecircular motionzero normal forceconservation of energykinetic energypotential energy

A skier is skiing along a frictionless circular track with radius of R=10mR=10m. Find the height where she leaves the surface of hemisphere.
Graph

Solution

First, let's find final velocity vfv_f before she leaves the surface, at the moment she leave the surface, the normal force is zero. N=0N=0

Fc=WcosθNmvf2R=mgcosθ0vf=gRcosθ\begin{aligned} \sum F_c &= W\cos \th - N\\ \frac{mv_f^2}{R} &= mg\cos \th - 0\\ v_f & = \sqrt{gR\cos \th} \end{aligned}

Second, accoriding to conservation of energy,

12mv02+mgR=12mvf2+mgH0+mgR=12m(gRcosθ)2+mgRcosθcosθ=23H=Rcosθ=10236.3m\begin{aligned} \frac{1}{2}mv_0^2 + mgR &= \frac{1}{2}mv_f^2 + mgH\\ 0 + mgR &= \frac{1}{2}m(\sqrt{gR\cos \th})^2 + mg \cdot R\cos\th\\ \To & \cos \th = \frac{2}{3}\\ H &= R\cos \th = 10 \cdot \frac{2}{3} \approx 6.3m \end{aligned}