2503 Resistance

Challenge

See figure. The cross section of the resistor is circular. The radius of one end is aa, and that of the other end is bb, and the length of the resistor is LL. The resistivity of the resistor is ρ\rho. Find the resistance RR.
Graph

Solution

(1) According to similarity

dd+L=abd=aLba\begin{aligned} \frac{d}{d + L} &= \frac{a}{b} \To d = \frac{aL}{b-a} \end{aligned}

The lower bound of x is d=aLbad = \dfrac{aL}{b-a}, and the upper bound is d+L=bLbad + L = \dfrac{bL}{b-a}
(2) The area of cross section is

xd+L=rbr=(ba)xLA=πr2=π(ba)2x2L2\begin{aligned} \frac{x}{d + L} &= \frac{r}{b} \To r = \frac{(b-a)x}{L}\\ A &= \pi r^2 = \frac{\pi(b-a)^2 x^2}{L^2} \end{aligned}

(3) The resistance can be calcuated by integration.

dR=ρdxA(R=ρLA)R=aL/(ba)bL/(ba)ρπ(ba)2x2L2dx=ρL2π(ba)2aL/(ba)bL/(ba)dxx2=ρLπab\begin{aligned} dR &= \frac{\rho dx}{A} \quad(R = \frac{\rho L}{A})\\ R &= \int_{aL/(b-a)}^{bL/(b-a)} \frac{\rho}{\frac{\pi(b-a)^2 x^2}{L^2}} dx\\ &= \frac{\rho L^2}{\pi(b-a)^2} \int_{aL/(b-a)}^{bL/(b-a)} \frac{dx}{x^2}\\ &= \frac{\rho L}{\pi ab} \end{aligned}